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p relaxation near glass transition singularities 
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Sweden 

Received 7 November 1988, in final form 30 January 1989 

Abstract. Glass transition singularities as obtained by mode-coupling theory are classified 
within the framework of singularity theory for smooth mappings in parameter spaces. The 
general equations for the p relaxation process are derived and characterised by sets of a few 
relevant parameters characteristic for every singularity. The simplest singularity, which is 
studied in detail, is specified by two relevant coordinates, the separation parameter and the 
exponent parameter. The scaling laws describing the dynamics and the leading corrections 
to scaling are discussed. It is shown that a strong asymmetry in the mode-coupling equations 
leads to a p relaxation peak that can be described asymptotically by a Cole-Cole law. The 
corresponding dynamics is interpreted within the picture of renewal processes for motion in 
a high-dimensional potential landscape. 

1. Introduction 

An outstanding feature of the dynamic behaviour of systems near the liquid-glass 
transition is the slow time variation of typical relaxation functions. In order to observe 
the decay of a disturbance from, say 90% of its initial value to 10% of it, one has to cover 
several decades of time t .  Similarly, if one wants to observe the corresponding relaxation 
peak in a susceptibility spectrum, one has to vary the frequency o over several orders 
of magnitude (Wong and Angell 1976). It is conventional to characterise this stretching 
phenomenon by the statement that the relaxation exhibits a very broad distribution of 
relaxation rates. For structural glass transitions, as opposed to spin-glass or orientational 
glass transitions, the mentioned primary or CY relaxation often exhibits a simple scaling 
property: the time-temperature superposition principle. The decay of variable cf, with 
increasing time t is given by a master function F ,  which is independent of control 
parameters like temperature, namely cf,(t) = F( t / z ) .  The changes of temperature merely 
enter the scale z (Wong and Angell 1976). Often, but not always, a secondary or p 
resonance is observed in dielectric loss spectra. The resonance frequency oB is located 
above 1/z, the value for (Y relaxation. The temperature variation of wB is much weaker 
than that of l/t. The p resonance also exhibits a very broad distribution of relaxation 
rates (Johari and Goldstein 1970, 1971). 

The mentioned relaxation properties have been derived in recent years within a so- 
called mode-coupling theory for the idealised glass transition. This theory describes the 
system by a set of conventionally defined correlation functions Qq(t). Here the label 
f On sabbatical leave from: Physik-Department der Technischen Universitat Munchen, D-8046 Garching, 
and Max-Planck-Institut fur Physik und Astrophysik, D-8000 Munchen, Federal Republic of Germany. 
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q denotes wavevectors of density or spin-density fluctuations. For convenience we 
normalise the initial conditions: @,(t = 0) = 1. The Laplace transforms 

@,(z)  = LT[@,(~)](z) = i dte"'@,(t) IoX 
are positive analytic functions of complex frequency 2. The spectra 
@: (CO) = Im Qq (w + io) are non-negative even functions of w .  They are of direct exper- 
imental interest since they determine the cross section for inelastic neutron scattering 
experiments. The dynamic susceptibilities are trivially related to the correlators, x,(z) = 
x,[z@,(z) + 11, where x, denotes the thermodynamic equilibrium susceptibility. The 
theory is defined by two equations of motion. One expresses the correlators in terms of 
a current relaxation kernel or a generalised viscosity M,(z): 

(1.2a) 

The kernel M,(z) can be written in terms of a stochastic friction term v q  2 0 and a non- 
trivial part m,(z): M , ( z )  = iv, + Qim,(z). Here Q, denotes a characteristic micro- 
scopic frequency scale. The other equation relates m,(t) to products of correlation 
functions: 

@&) = - 1/{z - Qi/[t  + M,(z)]} .  

(1.2b) 

The mode-coupling functional F, is a polynomial with non-negative coefficients u l ,  
u 2 ,  . . . , which play a role of mathematical control parameters. Let us combine them 
into avector V = ( u l ,  u2 ,  . . . , u N )  of theN-dimensional space R,of control parameters. 
The two frequencies v,, Q, determine the dynamics on microscopic timescales, since 
equations (1.2) imply 

@,(t+ 01 = 1 - i(n,ty + ~(~,t)(n, t )*  + o(t4). (1.3) 

The equations above were employed originally for supercooled simple liquids 
(Bengtzelius et a1 1984) and for a Heisenberg system with symmetric random couplings 
(Gotze and Sjogren 1984). The range of validity of the approximations leading to 
equations (1.2) is not fully understood. But within an extended theory the preceding 
one was obtained by ignoring certain relaxation processes, which are due to thermally 
activated hopping (Gotze and Sjogren 1987a). The hopping processes lead to a smearing 
of the ideal glass transition described by equations (1.2). Since most features of the true 
transition can be understood by neglecting the smearing (Gotze and Sjogren 1988) it is 
a tolerable simplification to ignore it completely. 

The idealised glass transition is characterised by a change in dynamics from ergodic 
to non-ergodic behaviour if the control parameter vector V crosses some hypersurface 
S, in parameter space RN. On one side of S, correlations decay to zero for large times: 
@,(t+ to) = 0. After perturbation the system returns to equilibrium. The correlator is 
continuous for low frequencies and the corresponding states V are referred to as liquid. 
On the other side of S,  correlations do not relax to zero for large times: @&t+ m) = 
f ,  > 0. Perturbations arrest spontaneously, a behaviour which is typical for non-ergodic 
motion (Kubo 1957). The corresponding states are referred to as glass. For the glass 
the correlator exhibits a non-ergodicity pole: @&) * z + - f ,  for z + 0. The density 
spectrumshowsanelasticlineontopofacontinuum: @:(U + 0) = . . f ,S(w).  Inaddition 
to the possible pole the correlator @,(z) exhibits a further singularity for z +  0 if 
V +  V ,  E S,. This singularity, to be referred to as the glass transition singularity, presents 
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a new paradigm for many particle dynamics. For structural glass transitionsf, behaves 
discontinuously at S, (Bengtzelius et aZl984); and one finds asymptotically an CY relax- 
ation peak with the mentioned scaling properties (Gotze 1984, 1987). In all examples 
studied so far the peak could be described very well by a Kohlrausch function (DeRaedt 
and Gotze 1986, Bengtzelius 1986, Bosse and Krieger 1986, Krieger and Bosse 1987, 
Gotze and Sjogren 1987b). There is a p relaxation contribution to the spectrum with 
rather universal features (Gotze 1985). Its main signature is a minimum in the sus- 
ceptibility spectrum (Gotze and Sjogren 1988). Under specific circumstances there can 
be a p peak with the correct experimental signature (Buchalla et a1 1988). The theory 
also yielded a number of previously unknown glass transition anomalies, which can be 
tested by neutron scattering experiments. Recent work shows that some predictions of 
the theory are in reasonable agreement with the experimental findings (Mezei et aZ 
1987a, b, Fujara and Petry 1987, Frick et aZ1988, Knaak et a1 1988, Richter et aZl988, 
Frick 1988). Therefore it seems justified to continue with the discussion of equations 

In this paper some features of /3 relaxation will be discussed, which are beyond the 
previously derived leading-order scaling-law results. By introducing natural coordinates 
in parameter space the range of applicability of scaling laws will be extended. 
The equations for the evaluation of corrections to scaling are obtained. It will be 
shown how exponents appear which depend on control parameters like temperature T.  
Our main result is the derivation of the Cole-Cole law for the /3 relaxation peak: 
~ ( z )  E l/[(-i z / o g ) o  + 11. 

Most of our results can be understood from a simplified model which deals with one 
correlation function @(t) only. So we will restrict ourselves mainly to this case and study 
the equation of motion 

(1.2). 

@(z)  = - 1/{z - 1/[(z + iv)/Q2 + ~~[F(@(t))l(z)]}. (1.4a) 

Here the mode-coupling functional is the polynomial 

N 

(1.4b) 
n = l  

The case F ( f )  = ulf is  trivial from a mathematical point of view and will not be con- 
sidered here. The model F ( f )  = u2 f (Leutheusser 1984, Bengtzelius eta1 1984) is of no 
interest either, since it does not exhibit stretching for the CY relaxation. So the simplest 
case of interest is the F12 model defined with a two-dimensional parameter space V = 
( u l ,  u2)  (Gotze 1984). This model was discussed recently in connection with a glass 
transition of the Pott's model (Kirkpatrick and Thirumalai 1988). We will also be 
interested in the F13 model specified by F I 3 ( f )  = u l f  + u3f3, since it is relevant for spin- 
glass transitions (Gotze and Sjogren 1984). The simplest model for a two-component 
system appears if we use (1.4) for one correlator and formulate the following equation 
for a second correlation function @,(t): 

@,(t) = - I/{z - I/[(z + iv,)/Q: + A,LT[@(t)@.,(t)](Z)]}. (1.5) 

This model was introduced to discuss diffusion of a tagged particle with density correlator 
@),(t). It moves in a surrounding medium, whose density correlator is @(t) (Sjogren 
1986). The medium may experience a glass transition. The behaviour of @.,(t) depends 
crucially on the magnitude of the coupling constant A),. 
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2. Dynamical equations for p relaxation 

In the glassy state equation (1.2b) implies m,(f-+ x) = F q ( f k )  > 0, and hence the 
relaxation kernel exhibits a non-ergodicity pole also, m,(z)z -+ - Fq( fk )  if z -+ 0. There- 
fore one expects m,(z) to be very large for small frequencies for all Vnear the transition 
hypersurface S,. In particular one expects for the specified frequencies and control 
parameters 

l(z + ivq)/Q:l e /LT[Fq(@k( t ) ) l (Z ) l .  (2.  l a )  

For V near S, this inequality defines implicitly a microscopic frequency scale Q,,, or a 
corresponding timescale t, = 2n/Q,. For ) z /  < 8, or t > tm inequality ( 2 . 1 ~ )  holds and 
one is allowed to neglect ( z  + iv,,)/Q: in comparison with m,(z). The equations of 
motion (2.1) then simplify and can be rewritten as: 

(2. lb) 

Equations (1.4) and (1.5) can be simplified in a similar manner. The transition 
hypersurface S,, the non-ergodicity parameter f , ,  the master functions for cy and /3 
relaxation and the like are determined by (2. l b ) .  This equation exhibits scale invariance. 
If @&t) is a solution, the same is true for the rescaled correlator 

Here y > 0 can be any scaling parameter. The term ( 2  + iv,)/Q; determines the short- 
time dynamics as specified by equation (1.3). Dropping this term, one eliminates any 
detailed connection between short-time dynamics and the behaviour of the correlation 
functions for small frequencies or long times. The whole influence of the short-time 
dynamics on the long-time correlators merely concerns the magnitude of the timescale. 
The latter cannot be derived from equation (2 . lb) .  It follows from matching a solution 
to the correct one for t - t,. This can be done by choosing a proper scale factory. The 
correct short-time solution for t 4 tm can be found by extension of equation (1.3) to any 
desired order in t. Another procedure consists of converting equations (1.2) to a set of 
coupled second-order differential equations, which can then be solved by some standard 
iteration. Connected with the scale invariance there is another feature of equation (2. l h )  
worth emphasising, The microscopic theory brings out (Bengtzelius et al 1984) that 
the mode-coupling functional Fq depends neither on particle mass nor explicit!y on 
temperature T.  It is given solely by pair and triple correlation functions, i.e. by integrals 
of exp[ - U(rl ,  r z ,  , . . ) / k B T ] ,  where Udenotes the interaction potential for particles at 
positions r l ,  r 2 , .  . .. In this sense one can say that equation (2.lb) merely reflects 
equilibrium properties as given by the potential part of the partition function. The 
control parameters, which fix functional F,, depend only on the topology of the potential 
energy surface defined in the high-dimensional configuration space. This surface has a 
very complicated structure with many local minima, maxima and saddle points. The 
mode-coupling theory describes approximately the statistics over all possible paths 
through the potential landscape. The microscopic details of the dynamics merely enter 
the timescale for the exploration of the potential landscape. The whole complexity of 
the potential energy surface is mapped via equation (2 . lb)  onto the time axis. The 
distribution of possible paths is mapped into distributions of waiting times for the 
particles which move between metastable states (Sjogren 1989). 

It is an obvious simplification of the analysis of the glass phase if one considers G(t) = 
@(t) - frather than @(t) itself, The non-ergodicitypoleis theneliminatedso that / zG(z )  1 

@ q ( z ) / P  + zQ,(z>l = LT[F*(@k( t ) ) l (Z ) .  

Q,y,(t) = @ q ( f / Y >  Q g Z )  = Y@&Y). (2.2) 
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is small for small frequencies. Since G(t)n+l decreases faster to zero than does G(t)", one 
can expect also that ILT[G(~)"+~](z)/LT[G(~)"](z)I is small for z +  0. Then the dynamic 
equations can be simplified by expanding in terms of the identified small parameters. 
This suggests trying a similar procedure for the whole neighbourhood of S,. So let us 
introduce some not yet specified real parameterfand define a function G by 

@(t) =f+ G(t) z@(z) = - f + zG(z).  

Under the assumptions 

IzG(z)/U - f) I 6 1 

1 LT[ G( t)  "+ '1 ( Z)/LT[ G ( t )  "1 ( z )  1 1 

we can expand equation (2.lb) as follows: 

( - & / z )  + 81G(z) 
+ (1 + b,)LT[G(t)*](z) + zG(z),  

+ ( y 3  + 8 3 ) ~ ~ v m 3 1 ( Z )  - Y 3 z 2 ~ ( 4 3  
4- ( y 4  + 84)LT[G(t )4](~)  + y 4 ~ 3 G ( ~ ) 4  + . . . = 0. 

Here the following abbreviations are used: Y k  = 1/( 1 - f)"-' and 

b,(V,f) = [dkAF(V,f)/dfk](l -f)3/k! 
AF(V,f) =F(V,f)  -f(l -f)-'. 

These results follow from equation (1.4) for the simplified model. The theory for 
equations (1.2) yields formula (2.5) also, but the results for bk, Y k  are more complicated 
(Gotze 1985,1987). The mode-coupling functional F and therefore AFand bk depend 
smoothly on V and on f, For simplicity of notation we will usually not indicate this 
dependence. We have seen above that the preceding expansion allows for a discussion 
of the glassy state for all small frequencies iff = f is  chosen. For the liquid this is not the 
case. Expansion (2.5) becomes invalid then if lz /  < 1/z or t > z, where t is the scale for 
the CY relaxation process (Gotze 1984, 1985). In this paper the CY relaxation will not be 
discussed explicitly. Expansion (2.5) is the basis of the p relaxation theory. Equations 
(2.4) define implicitly the range of frequencies or times for the p relaxation process. The 
task is the solution of (2.5) and the explicit characterisation of the range of validity of 
the solution. 

The equations for the form factorsf, of the glass are obtained by multiplying (2.lb) 
by z and then specialising to z = 0 (Bengtzelius et a1 1984): 

fq / ( l  -fq) = F q ( u l ,  . . . , u ~ ; f l , .  . , f ~ )  4 1, .  . . , M .  ( 2 . 8 ~ )  

Here all variables are indicated explicitly. For the simplified model the result reads 

AF(V,f) = 0. (2.8b) 

This equation defines a smooth N-dimensional manifold in the ( N  + 1)-dimensional 
space of vectors (U', u 2 , .  . . , uN,f ) .  The projection S of this manifold into the N- 
dimensional parameter space RN is the set of possible glass states. The singularities S, of 
this mapping are candidates for glass transition singularities. The classification theory 
of the specified singularities is known from other contexts (Arnold 1986). For every N 
there is a finite number of generic singularities, i.e. there appear several possibilities of 
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quite different glass transition scenarios. The simplest singularities are Whitney folds, 
characterised by such critical values (V,, f ,) obeying 

( 2 . 9 ~ )  

Furthermore the second derivative of AFmust not vanish. Using the notation (2.6) the 
fold singularities are specified by 

The next more complicated singularities, the Whitney cusps, are found if also 
d2AF/af2 = 0 while the third derivative of AFis non-zero: 

Higher-order cuspoids are obtained by obvious generalisation. Equation (2.9b) defines 
the hypersurface S, of the simplest glass transition singularities in parameter space RN, 
which will be analysed in detail. Equation (2.10) defines the set of simple endpoints of 
S,; the dynamics near these endpoints will be discussed in a subsequent paper. The 
generic singularities of the full theory do not only depend on the dimensionality N but 
also on the degeneracy N’ of the vanishing eigenvalue of the Jacobian matrix relevant 
for the set of implicit equations (2 .8~) .  The cuspoids are the singularities of simple 
eigenvalues N’ = 1, and a one-component model can reproduce this case. This is the 
topological reason why the two simplest glass transition scenarios, the fold and the cusp 
singularities, can also be analysed with a simplified model, equation (1.4). For a one- 
component fluid one can make use of the special form of the mode-coupling functional 
in order to prove that N’ = 1 is the only generic possibility (Gotze 1987). It is not known 
at present whether or not mixtures or fluids with internal degrees of freedom require the 
discussion of singularities with N > 1. In such a case the simplest schematic models 
would consist of N’ coupled equations. 

In the following two sections it will be shown how equation (2.5) is solved by scaling 
laws. From equation ( 2 . 4 ~ )  one expects complications if (1 - f )  is small; this problem 
will be examined in 8 5 .  

3. Critical relaxation 

Let us start the discussion of the equations of motion for parameter points V, on the 
transition hypersurface S,. The dynamic solution for these points shall be referred to as 
critical relaxation. The value of the glass form factor for V = V, shall be denoted byf, 
and 13; = Sk(Vc,fc), y i  = y k ( f c ) .  In equation (2.3) we choose f = f , ,  so that for the 
transition under consideration equations (2.9) yield SC, = 6; = 0; 6 ;  f 0. The endpoints 
of S, are characterised by SC, = 0, equation (2.10). One verifies easily that S, crosses the 
nth parameter axis at U ;  = nn/ (n  - l)n-l. At this point fc  = (n  - l ) / n  and SC, = --& 



p relaxation near glass transition singularities 4189 

Since a2 depends on V continuously one then gets SC, < 0 on S,, as long as endpoints are 
avoided. Let us introduce the notation A = 1 + SC,, ,U = -65, i.e. 

(3. la) 

The glass transition singularity under study is characterised by 

O < A < l .  

The cusp singularity, to be studied in a following paper, is specified by the condition 

A = l  P'O simple endpoints. (3.3) 
At the critical points equation (2.5) specialises to 

ALT[G(~)~] ( z )  + zG(z)* 

+ ( y s  - ,u)LT[G(~)~](z) - ~ $ z ' G ( z ) ~  + . . . = 0. (3.4) 
Sincez~~[t-"]  ( z )  = - r ( l  - a) (-iz)",withrdenotingthegammafunction, function 

( 3 . 5 ~ )  
G(t) l/f makes the first line of equation (3.4) vanish provided 

r(i - a)*/r(l  - 2a) = A. 
If one requires 

O < a < $  (3.5b) 

then the exponent a is determined uniquely, G(z) is positive analytic and inequalities 
(2.4) are satisfied for small frequencies z or large times t. So the mentioned power 
function is the relevant critical decay law for A < 1, as was noted in all the previous 
papers on the mode-coupling theory. Equation (3.4) allows for a systematic asymptotic 
expansion of G(t) in increasing powers of l/P. We will need the leading and next-to- 
leading terms: 

( 3 . 6 ~ )  

Substitution into equation (3.4) fixes c to 

c = [y;r(l - (3.6b) 

So for normal transitions the simple power-law decay G(t) = (to/t)" describes the 
dynamics in the limit /zI + 0 or t +. 30. This power law dominates if t exceeds some critical 
value t: or if IzI 

tb = tocl'". (3 .6~)  

If c is of order unity one can choose tb - to - t,, and the critical decay is observed as 
soon as the time exceeds the microscopic one. This situation was exemplified in the 
preceding papers (DeRaedt and Gotze 1986, Gotze and Sjogren 1988). However, if A 
tends to unity, exponent a decreases to zero: 

1 - A  = ta2n2 a+. 0. ( 3 . 7 ~ )  

G(t) = (to/t)" + $ ~ ( t ~ / t ) * ~  + . . . . 

+ (,U - y % ) r ( l  - 3a)]/[AT(1 - 3a) - r(l - a ) r ( l  - 2a)l. 

l/tk, where 

In this case coefficient c becomes very large 
c = 6p/(a2n2) a+ 0. (3.7b) 

Consequently, any regular to leads to a diverging t: in equation (3 .6~)  if a + 0. For small 
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a the result ( 3 . 6 ~ )  no longer describes the complete relaxation pattern. In a following 
paper it will be shown that within the time window tm < t < tk the critical relaxation of 
the endpoint is dominant, and this is quite different from a simple power law. 

4. p Relaxation scaling laws 

In this section p relaxation for parameter vector Vclose to inner points of the transition 
hypersurface S, will be considered. From the preceding papers (Bengtzelius et aZ1984, 
Gotze 1984, 1985) one knows that the dynamics is described by scaling laws. Here we 
want to extend this work in order to understand the origin of the corrections to scaling 
laws. For V S, the two terms of the first line in equation (2.5) appear. Since a fold 
singularity is generically described by one relevant parameter (Arnold 1986) it must be 
possible to eliminate one of the terms. This we can achieve by choosingfproperly. The 
condition So = 0 can be satisfied only on the glass side of S, but not on the other, and 
therefore we eliminate al .  Sofshall be chosen as a function of V obeying: 

The condition (3.2) for normal transition points implies aSl/8flc # 0, and equation (4.1) 
definesf(V) uniquely in a neighbourhood of S,; it is a smooth function of V. Let us 
restrict the following discussion to this neighbourhood and introduce additional smooth 
functions of V: 

CJW> = SO(f(V)> V) ( 4 . 2 ~ )  

A(V) = 1 + &(f(V)> v) (4.2b) 

P(V) = -S3(fCV>, VI. ( 4 . 2 ~ )  

On S, functions A(V), p(V) specialise to the corresponding quantities introduced above 
in (3.1). For V E S, function CJ vanishes. The set of parameter points a(V) = CJ = 
constant is a smooth hypersurface So, which approaches S, for Cr- 0. The parameter CJ 
characterises in a natural manner the distance of V from S,, and therefore it will be 
referred to as the separation parameter. The set of points A(V) = A = constant is also a 
smooth hypersurface SA in RN. Since il determines the critical exponents of the theory, 
equation (3.5a), it will be referred to as exponent parameter. The construction of the 
hypersurfaces S, and SA is trivial for the one-component model. Equations (1.4b), (2.6) 
and (2.7) imply 

(4.3a) 

(4.3b) 

(4.3c) 

One can consider the pair of equations (4.3a, b) as linear equations for two parameters, 
( u l ,  u 2 )  say. Solution yields S, in a parameter representati0n;fand U, for n # 1 , 2  are 
the hypersurface parameters. Similarly, the pair of equations (4.3b, c)  yield SA. The 
transformationfromtheNadhoccontrolparameters(ul,. . . , u,)to(a, A ,  u 3 , .  . . , U,) 
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can be considered as a coordinate transformation in parameter space. Then U and A 
appear as natural mathematical control parameters of our problem. The other ( N  - 2) 
parameters ( u 3 , .  . . , uN)  will be irrelevant for the discussion of the scaling laws. They 
enter as function p in the leading corrections to scaling only. 

Under realistic experimental conditions one cannot vary control parameters like 
U ,  arbitrarily. Rather one can manipulate only a small number of parameters like 
temperature, density, composition or magnetic field. To study the Whitney fold it is 
sufficient to consider just one parameter, say the temperature T. Changes of Tare then 
described by a path C in parameter space RN: V = V( T). Let us assume that C crosses S, 
for T = T,. Near the transition point one can approximate C by a straight line, specified 
by its tangent vector n: 

V ( T )  = v, + E n  + O(E2). (4.4) 

Here E = (T, - T)/Tc denotes the physical separation parameter. The normal vector nc 
of the transition hypersurface S, at V ,  reads: 

nF = fs- '/a I =  1,. . . , N .  (4 * 5 )  
Here a i s  a positive normalisation constant. Vector nc pointsin the direction of increasing 
couplings. Let us anticipate that C crosses S, transversely so that large T correspond 
to small couplings: n - nc > 0. Then the strong-coupling side of S,, the glassy phase, 
corresponds to E > 0. The liquid side is characterised by E < 0 and E = 0 denotes the 
critical point. Let us expand equation (4.1) in terms of Sf=f-fc ,  6ul = U /  - U ? .  One 
finds 

(4.6) 

For the expansion of U one has to distinguish between type A and type B transitions 
(Gotze 1984). The first one occurs at the hypersurface u1  = 1; theref, = 0 and A = U ; .  

Thus 

CJ = *[$/(I - U ; ) ] & *  + O ( E ~ )  type A. (4.7) 

So the separation parameter is positive on both sides of S,. In leading order in E ,  CJ is 
symmetric with respect to changes of E to - E .  For the second type there holdsf, > 0. 
One obtains 

(4.8) CJ = If,(l - fc)3an * n C ] E  + O(E2) type B. 

In this case the separation parameter varies linearly across the transition hypersurface 
S,. It is positive on the strong-coupling side and negative on the weak-coupling one. 

The concepts introduced above are illustrated for the F12 model and the FI3 model in 
figures l(a) and (b). The heavy full curves are the type B transition lines, and the type 
A transition lines are shown broken. The endpoints are indicated by open circles. It is a 
non-generic accident of the F12 model that the A transition endpoint coincides with the 
endpoint of the B transition. The coordinate lines SA, S, are shown by fine full curves. 
For the F13 model the U lines for the A transition are not shown in order not to overload 
the figui-e. The type A transition for the F13 model was discussed previously (Gotze and 
Sjogren 1984, Gotze and Haussmann 1988) and will not be reconsidered here. The A = 
1 lines, which mark the boundary of the natural coordinate system, are shown as dotted 
curves. 
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0 1 2 3 i 

“3 
“2 

Figure 1. (a)  Natural coordinate system A ,  U for the Fl2 model. The heavy full curve is the 
transition line U = 0 for type B transition. The broken line is the transition line 0 = 0 for 
type A transition. The fine full curves denote the constant h and alines for h = 0.3,0.5,0.7 
and U = 1-0.0025 t 0.0050 respectively. The dotted curve is the line A = 1, and the small 
circle denotes the endpoint U ,  = u 2  = 1. (b )  Same as (a)  but for the F,, model. 

Exploiting the natural coordinates, equation (2.5) reads 

- (o / z )  + ALT[G(t)2](~) + z G ( z ) ~  

+ (y3 - ,UU)LT[G(~)~](Z) - ~ ~ z ’ G ( z ) ~  + . . . = 0. (4.9) 

From the discussion of the critical behaviour in the preceding section one expects that 
the first line determines the leading contribution G,(t) to the correlator G(t), while the 
second line yields the first correction. One gets 

GO(0 = cog ,  ( two)  c ,  = (laj)”* 0 2 0  (4. 10u) 

where functions g, obey the equation 

Ti-’ -k ALT[g, (t^)2] ( 2 )  + igi  (i)2 = 0 (4. lob) 

and t^ = tu,, i = z/w,. Function G,(t) is given by a scaling law. Changes of the separation 
parameter a merely enter via changes of the correlation scale c, and the frequency scale 
w,. The master functions gi, to be determined from the scaling equation (4. lob) ,  do not 
depend on a; but notice that they depend on the exponent parameter A .  Because of the 
scale invariance of (4.9) or (4.10b), w, cannot be derived from those equations. To fix 
it we notice that for large rescaled frequencies 121 = lz/w,/ 1 or short rescaled times 
t^= two< 1 the first term in (4.10b) can be neglected and thus one comes back to (3.4): 
g..(t̂ ) CC l/?. Imposing the normalisation 

gt(t^)?-+ 1 f-+ 0 (4.10c) 

solution (4 .10~)  is compatible with result ( 3 . 6 ~ )  if and only if 

w,  = ) 0 ) 1 ’ 2 a / t 0 .  (4.10d) 

The solution of equation (4.10b) can be studied by series expansion (Gotze 1984). 
The scaling equation (4. 10b) exhibits a l /2  singularity. For (T > 0 it can be eliminated by 
the substitution 

g + ( i )  = (1 - A)-1’2 + 2(1 - A)l/Zg(f). (4. l l a )  

The first term leads to a a’/’ variation of the form factor at the glass instability point: 
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f = f + c,(l - A)-’’*, 0- +O.  The new master function then obeys the modified scaling 
equation 

(4. l lb)  - g ( f )  f hLT[g(t^)2] ( 2 )  -k fg(i?)2 = 0. 

In particular one finds for the zero-frequency spectrum 

g”(d = 0) = A / =  dig(;)*. 
0 

(4. l l c )  

This result indicates that g ( f )  is regular for small 2 implying exponential decay of g(f) 
for large f. The l/i singularity in equation (4. lob) for g-(t^) implies an even stronger 
singularity for the correlator (Gotze 1984) which is equivalent to the von Schweidler law 

g - ( i %  1) = -Bib (4 .12~)  

g - ( l f /  1) = (B/f)T(l + b)/(-if)b. (4.12b) 

The von Schweidler exponent b is also determined by the exponent parameter: A = 
r(l + b)2/r(l + b ) ,  0 < b < 1. If one replaces 0 and f by the leading asymptotic 
expressions near the transition, equations (4.6), (4.7) and (4.8), the preceding results 
reduce to the ones discussed in the previous papers (Gotze 1984, 1985). To get an 
understanding of the relevance of G,(t) we write G(t) = G,(t) + sG(t)  and reformulate 
equation (4.9) as an equation for 6G. Obviously, sG(t) is proportional to c: = 101 and 
one can write 

(4.13) 

Functions f? are again independent of the separation parameter. They describe the 
leading correction to the scaling law and are to be obtained from the linear equation: 

2ALT[g. (t^)fl (/)I (2) f 22gi (2)fz ( 2 )  = y 3 2 2 g , ( f ) 3  - (y3 - p)LT[g, ( i j3]  (e). (4.14) 

Higher-order contributions to equation (4.13) can be derived similarly. The result for 
G(t) implies 

lim G(i) = g, (t“) G = G/c, t = tu,. (4.15) 

In the scaling limit, cr+ 0 and t - +  x ,  z-+ 0 such that the rescaled time f =  tw, and 
rescaled frequency 2 = z / u ,  are fixed, the rescaled correlator G = G/c, approaches the 
master function g,. One checks easily that for the specified limit the ratios on the left- 
hand side of inequalities (2.4) vanish. Hence on scale w, the scaling law G,(t) solves the 
dynamic equation (2.5) for p relaxation in the limit 0 + 0. Furthermore the ratio of the 
left-hand side to the right-hand side of equation (2. la) vanishes so that equation (2.5) is 
equivalent to the original equation of motion (1.4). 

The scaling law is a good approximation to the solution of the mode-coupling 
equations if the second contribution in the brackets of equation (4.13) can be neglected 
in comparison to the first one. For short rescaled times equation (4.14) can be solved 
easily after substitution of equation (4.10~):  

f, (i)t”2U- dc i+ 0.  (4.16) 

Constant c is given by equation (3.6b) and so f& reproduces for tu,% 1 the leading 
correction to the critical decay, equation (3 .6~) .  Because of equation (4. l l a )  function 
g, exhibits a non-ergodicity pole: g+(2)2 -+ -(1 - for i -+ 0. This pole implies a 

G(t) = c,[g,(tw,) + c,f?(tw,) + . . .]. 

,-lo 
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Figure 2. (a )  Plot of (Q - f)/u’I2 as a function of rescaled time tu”2n of the F12 model for 
U = 0.001, A = 0.7. The curves 1 ,2 ,3  correspond to ( U , ,  u 2 )  = (0.965,0.600), (1.033,0.857), 
(0.856,1.939), v = 5Q. ( b )  Plotof~’~/u’’2asafunctionofw/u’’2”forthesamedataasin (a). 

similar one forf,, which can easily be evaluated from equatiori (4.14). As a result one 
gets in analogy to equation (4. l l a ) :  

f + ( i )  = -2p(l - A ) - 2  +f(i) (4.17) 

wheref(2) is regular for small frequencies. Because of equation (4.13) the non-ergodicity 
contribution fromf, yields a contribution to the glass form factorfwhich is proportional 
to a, Similarly to the reasoning of B 3 we conclude: if the neighbourhood of the endpoint 
is avoided the scaling law result (4. loa) describes the solution for Q > 0, provided t S=- t,, 
/zI < l / tm and 1 0 1  < 0.01 so that the relevant correction term c, in equation (4.13) is 
smaller than 10%. In the specified region G(t) is determined completely by the two 
cordinates a and A .  On the whole hypersurface Si. the solution is fixed by a, and changes 
of amerely enter via changes of scales. This holds except that to in equation (4.10b) will 
vary somewhat with V. The scaling property is exemplified in figures 2(a) and (b )  for the 
F12 model for A = 0.7 and a = 0,001. Shown are the rescaled correlators [@(t) - f]/a’/’ 
and the rescaled susceptibility spectra x”/a’/* as functions of the rescaled time tall2“ or 
rescaled frequency ~ / d / * ~ ,  respectively. The three curves correspond respectively to 
parameters on the liquid side of the type A transition, on the glass side of the type A 
transition, and on the glass side of the type B transition. The corresponding parameter 
vectors ( u l ,  U * )  are indicated in figure l (a)  by crosses. If G(t) obeyed the scaling law 
exactly, the three curves shown in the figures would coincide. The regular variations of 
to with V imply that the curves exhibit a parallel shift. Redoing this shift the curves 
of figure 2(a) coincide completely. This holds also for the curves of figure 2(b) for 
m/a1/2a < lo4. For large frequencies the susceptibility spectra show a peak. It reflects 
the motion on microscopic scales which is outside the range of validity of the /?relaxation 
theory. The von Schweidler divergence of g-(i)  f o r i  + 0 implies an even stronger low- 
frequency divergence forf-(i). Substitution of equations (4.12) into (4.14) yields 

(4 .18~)  

where B1/B2 is given by equation (3.6b) with a replaced by -b. Substitution of these 
results into equation (4.13) leads to 

G(tW, B 1) = -B( t / r )b  + $ B , ( ~ / T ) ~ ’ .  (4.18b) 

Here l/t = 0,1a~’/*~ = /olY/to, with y = l/(2a) + 1/(2b), is a new frequency scale. The 
/3 relaxation scaling law for a < 0 is thus restricted to lzri B 1 or t / z  1. This restriction 

f-(iS=- 1) = &Bl t  2 6  
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Figure 3. (a) The function Q ( t )  versus log,,(&?) for the F12 model for iC = 0.7, Y = 5 52 
and -U = 0.008,0.004,0.002,0.001,0.0005 (full curves A-E). The broken curve labelled 
a gives the functionf, + A/t" withA = 0.65 and the broken curve labelled b gives the func- 
tionf, - B( f / t )*  with B = 1.30. (b )  Plot of (Q - f)/lal"'as a function of t l~11/2" for the data 
of (a). 

holds in addition to the ones derived above for a > 0. The restriction is due to the a 
relaxation process, whose scale is l/t. What appears as leading correction to /3 scaling 
for large tw,in equation (4.18b) is identical to the next-to-leading term in the short-time 
expansion of the a relaxation process, discussed in our previous work (Gotze 1984, 
Gotze and Sjogren 1987b). In figure 3(a) the relaxation curves @(t) for the FI2 model 
are shownfor parameter points on the line A = 0.7. The separation parameters are - U  = 
0.008/2" for n = 0-4. An initial microscopic variation according to equation (1.3) (v = 
5 Q )  is observed for logIo(tS2) < 0.5. Then all curves follow the critical decay lawf, + 
A/(tQ))" with A = 0.65, which is given as the broken curve in the figure with label a. This 
holds until the von Schweidler law f c  - B(t/t)b with B = 1.3 takes over. The latter is 
shown for U = -0.0005 by the broken curve with label b. In figure 3(b) the results are 
replotted as [@(t) -fl/la/1/2 versus t / ~ / ' / ~ ) "  in order to demonstrate the relaxation 
scaling property. 

Let us come back to the changes of the dynamics due to those more realistic parameter 
variations discussed above in connection with equation (4.4). Projection of the path C 
in the hyperplanes S*,  S,gives smooth functions A (  T )  and a( T) .  For T = T, the correlator 
is given by the scaling law (4.10). But not only is the separation parameter a complicated 
function of temperature but so is the exponent parameter. In particular the exponents 
themselves will depend on the control parameter: a = a(T) ,  b = b(T) .  If the model is 
defined, all these functions can be evaluated. However, for realistic systems this is not 
possible at present, since the connection of the physical control parameter T with the 
mathematical ones, o and A ,  is determined by all microscopic details. Nevertheless, our 
theory yields results beyond a qualitative discussion. For given Ttwo measurements can 
yield A(T), a(T).  For example, the detection of the critical spectrum, ~ " ( w )  cc ma, 
equation ( 3 . 6 ~ )  yields a ( T )  and from equation ( 3 . 5 ~ )  A(T) follows. Determining the 
crossover frequency of ~ " ( w )  from the von Schweidler law ~"(0) cc (w /w , ) -~  to the 
critical law for a < 0 or from the linear low-frequency increase ~ " ( w )  cc (w/w,) to the 
sublinear critical increase for 0 > 0 yields U,. Equation (4. l oa )  then determines aitself 
up to an irrelevant scale to. Then the complete p spectrum is given for this temperature 
by our formulae. This implies, for example, that the von Schweidler exponent b(T)  
should be related to a ( T )  by r(l + b)2/r(l + 2b) = r(l - a)2/r( l  - a). The ratio 
~"(o = wo) /w :  should be a constant. Near the transition one gets for type B transitions 
from equation (4.8), o(T)/E-+ uo > 0, A(T) + A < 1. This implies simple power-law 
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results c, 0~ le11/2, 0, CC I E ~ ~ / ~ ~ .  The range of validity of these results is smaller than the 
one of the general theory. The asymptotic formula 

G(t) - ( g o  I El) g 2 ( t (% I4 / t o  1 (4.19) 

which was studied in the preceding papers, does not work as well as our more general 
expression, equation (4.10~) .  This is evident from the results shown in figure 3 in 
comparison with similar ones shown for the same model and A = 0.7 in Gotze and 
Sjogren (1988). In the latter case the transition line was crossed on a perpendicular path 
C. The deviations of G(t) from the asymptotic law in this case are not really deviations 
from the scaling law. Rather they reflect variations of A( T )  - A(T,). If for A < 1 serious 
deviations from scaling laws are found, they reflect interesting phenomena, which cannot 
be described properly by a one-component model. An example will be discussed in the 
next section. 

W Gotze and L Sjogren 

5. p relaxation peak 

In the previous section it was shown that /3 relaxation of a one-component model can be 
described well by a scaling law, equation (4. lo), provided proper coordinates (0, A )  are 
introduced. One can show quite generally (Gotze 1985) that for a+O in a multi- 
component model @,(t) = f ,  + h,G,(t). In this sense /3 relaxationis universal. However, 
the range of validity of the scaling law does not exhibit the same kind of universality. 
The corrections to scaling depend onf,, h,. So new parameters enter and new features 
of the spectra may occur. In this section an example will be discussed for the model 
defined in connection with equation (1.5). Let us start by identifying the problem more 
explicitly. Near the glass transition the dynamic equation is simplified by dropping ( z  + 
ivs)/sZ:, as discussed in Q 2. One can also express the correlator Q in terms offand G(t), 
equation (2.3). As a result one gets with u1 = A$ 

(5. la)  

(5. lb) 

Introducing aparameterfs as before in order to write Qs( t )  = 
the equations under the assumption 

+ Gs(t), one can simplify 

/zG(z) / ( l  - f s ) l  -=z 1. ( 5 . 2 ~ )  

The result, which is the analogue to equation (2.5), reads: 

(-l/Z> [fs(l - f s 1 - l  - L u l l  

+ G,(Z)[(1 - f X 2  - U 1 1  - G(z)A$, 
-A,LT[G(t)Gs(t)](~) - (1 - f s ) - 3 ~ G , ( ~ ) 2  + . . . = 0. (5.2b) 

The pole term can be eliminated by choosingfs = 1 - u; l .  In leading order G, is then 
found by substituting the leading result, equation (4.10), for G and requiring the second 
line to vanish: 

G: ( t )  = Go (t>/(Asf’>. (5.3) 
So the correlator G, follows the same scaling law as G(t), except for a trivial scale factor. 
One can show easily that in the scaling limit, explained in connection with equation 
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w / R  

Figure 4. Plot of x i (w)  versus loglo(o/R) for hs = 15, 8, = 252, v, = 552, u = -0.0005, h = 
0.7, I, = 5R (full curve). The broken curves show the asymptotic laws proportional to w' 
and w-" respectively. The dotted curve is the Cole-Cole law in equation (5.96). 

(4.15), the result G! provides a solution of our problem. In this limit, for example, the 
last line in equation (5.2b) drops out. Let us recall the critical correlator, equation ( 3 . 6 ~ ) :  

G o ( z )  = A(-l/z)T(l - a)(-iz/Q))" 121 B 0,. ( 5 . 4 ~ )  

Hence the critical susceptibility spectrum reads: 

x $ ( w )  = AT(1 - a)  sin(~na)(w/Q))"//A,f~.  (5.4b) 

In figure 4 the full curve reproduces part of our previous result for xi for A, = 15, v, = 
5!2,52, = 2S2, il = 0.7 close to the transition point (Buchallaetall988). The parameters 
A, and Q, were chosen to illustrate a strong-coupling situation. The increasing broken 
curve is the expected critical spectrum, equation (5.4b). In this case the large A, yields a 
small (1 -fJ and therefore one comes in conflict with inequality ( 5 . 2 ~ )  for log,,(w/ 
Q )  3 -4. One can work out the leading correction to the critical spectrum of x, from 
equation (5.2b) as done in § 3. It is negative and dominates for w / Q  > In con- 
clusion, if (1 - fJ1 becomes large a frequency window opens between w, and Q, where 
the scaling law (5.3) does not describe the relaxation of @,. Figure 4 shows that x%(w) is 
indeed quite different from the critical spectrum. It exhibits a resonance whose width is 
larger than five decades. Thus it describes a relaxation process with a distribution of 
relaxation rates extending over more than four decades. This is the /3 peak, often 
observed in dielectric loss experiments (Johari and Goldstein 1970, 1971). It can be 
analysed within our theory, because it is located in a frequency region where G(t), the 
relevant input in equations (5.1), has the simple critical form of equation (5 .4~) .  

Solving equation (5 .  la) for @, in terms of N yields: 

cas(.?) = (1/22U1)[-zN(z) + 1 - U 1  + W-(Z)W+(Z)].  ( 5 . 5 ~ )  

Here the abbreviations are used 

W ,  ( 2 )  = [ Z N ( Z )  - a*]"2 a* = 1 + U 1  t 2v;p.  (5.5b) 

This is equivalent to the expression for x,(z) = 1 + z@,(z): 

x,(z) = -2/[zN(z) - 1 - U 1  + W - ( z ) W + ( z ) ] .  (5%) 

In the limit of small z N ( z )  we expand the roots in equation ( 5 . 5 ~ )  and obtain 

adz)  = <-fs/z> + N(z)/b1(u, - 111 IzN(z)l e a,. ( 5 . 6 ~ )  

The leading contribution to N ( z )  is then found by substituting QS(t) = f, into equation 
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( 5 .  l b ) :  N ( z )  = AsfsG(z). With equation ( 5 . 4 ~ )  one arrives at the desired low-frequency 
expression for the p peak: 

x,(z) = (-iz/Q)'Ar(l - a ) / A , f z  lzN(z)j @ a*.  (5.6b) 

The formula is equivalent to equation (5.4b) and the result is the increasing broken curve 
in figure 4. In the opposite limit for large lzN(z)l, we expand the roots in equation ( 5 . 5 ~ )  
in order to get 

xdz) = -l/[zN(z)l jZN(Z)I 9 a,. (5.7a) 

This implies the substitution @,(t) = 1 in equation (5 .  l b ) ,  so that N ( z )  = AsG(z). With 
equation ( 5 . 4 ~ )  one obtains the high-frequency expression for the /3 peak: 

x,(z) = (-iz/Q)-'/[Adr(1 - a) ]  IzN(z)I 9 ai. (5.7b) 

Hence%',' (U) decreases with increasing frequency. The result is shown as the decreasing 
broken curve in figure 4. In conclusion, if (z/(l - fs)l is so large that condition ( 5 . 2 ~ )  is 
violated, the susceptibility spectrum crosses over from the sublinear critical increase 
xy cc ma to a decreasing power-law spectrum xp cc l / m a .  The crossover causes the /3 
peak and the power-law wings cause the broad distribution of relaxation rates. The two 
asymptotes intersect at a frequency 

u p  = QCfc/[Ar(l - U) ] } ' / "  ( 5 . 8 )  

which gives an estimation of the position of the /3 peak. For our model the number in 
the curly braces is about 0.34. Since 1/a - 3 one finds up to be about 1.4 decades below 
Q. We notice that for a larger value of the exponent parameter A the exponent a would 
be smaller, and thus the p peak would be shifted to even lower frequencies. 

To proceed beyond the evaluation of asymptotes for large and small frequencies, we 
want to solve the equations of motion for large u l .  One notices from equation (5.5b) 
that W+W-/ul = [ zN(z ) /u l  - I ]  + O(l/u~/').  From equation ( 5 . 5 ~ )  one gets therefore 
x,(z)/ul = -l/[zN(z)/ul - 11 + O(l/u;/*). From equation ( 5 . 5 2 )  one concludes that 
@,(t) = 1 + O ( ~ / U \ / ~ )  and thus equation (5.lb) yields N ( z )  = A,[G(z) + O(l/u:/*)]. 
Remembering u 1  = A,fone arrives at the result: 

lim xs(z)(Apf)  = - ~ / W o ( Z > / f l  -1). (5.9a) 
A,-+., 

This formula yields the /3 relaxation dynamics for strong coupling for all frequencies and 
separation parameters 8, where the scaling law result, equation (4.10), is valid for a. 
Specialising to the region of critical dynamics one can substitute equation ( 5 . 4 ~ )  to get 

X d Z )  = <l/Asf>/[Fi./mp>" +I1 A, 9 1 U, e 121 e Q. (5.96) 

This is the Cole-Cole susceptibility formula. It is thus found as an exact asymptotic 
implication of the mode-coupling theory. The range of validity is specified precisely. 
This formula shows that the /3 peak does not vary sensitively for T near the transition 
value. It exists on the glassy side (T > 0 as long as the critical spectrum for @(t) can be 
observed. It also exists for small (T on the liquid side of the transition. However with 
increasing ( T  - Tc)/Tc it disappears soon, since the strong von Schweidler tail of the 
a relaxation peak will cover the /? peak. Notice that formula ( 5 . 9 ~ )  describes this 
phenomenon completely as well. The dotted curve in figure 4 represents the Cole-Cole 
spectrum. The small discrepancies between the numerical solution and the analytical 
result (5.9b) are due to the corrections to the asymptotic expansion, which are pro- 
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Figure 5. Plot of O,(t52) versus log,,(tQ) for A., = 10, 52, = Q, v, = 5Q. The parameters 
(A,  U )  are the same as used in figure 3. The dotted curve is the Mittag-Leffler function, 
equation (5.9~).  

portional to 1/u :'2. The Laplace back-transform of the correlator corresponding to the 
Cole-Cole law is given by the Mittag-Leffler function M,[x] = &x"/T( l  + nu): 

@do = f s  + ( l /As f )Ma[ - ( tUp)a l  As + 1 t m e  t e 0 , l .  (5.9c) 

This result is shown as a dotted curve in figure 5 for our model in comparison with the 
numerical solutions for @.,(t). The parameters for 0 and A are the same as those used in 
figure 3. For times exceeding the initial decay interval, Qt S 1,  formula ( 5 . 9 ~ )  describes 
the correlators perfectly till the von Schweidler decay signals the start of the arelaxation 
process. The result in (5 .9b)  implies an interesting scaling property for the p peak. 
Plotting x: (w) /x :  (cog) versus w/wp  all curves are predicted to fall on one master curve. 
Such a scaling behaviour has been observed experimentally for several substances with 
very symmetric master curves (Ishida et a1 1962, 1965). 

The universality features of the /3 relaxation allow the reduction of the general 
equations of motion (1 .2)  to the ones for schematic models (Gotze 1985, 1987). So our 
results are valid for the most general cases studied so far for the dynamics of glass 
transitions within mode-coupling theories. They imply the existence of the /3 peak 
whenever ( 1  - f,) for one set of q values is much smaller than ( 1  - f,) for the other q 
values, as explained by Buchalla et a1 (1988). This holds in particular for the Bosse- 
Krieger model (Bosse and Krieger 1986) of a symmetric molten salt, as was also illus- 
trated recently by numerical work (Bosse et a1 1988). Our present formulae show how 
for this and similar cases @;(U) can be determined analytically. None of the models 
mentioned is realistic enough to evaluate the dielectric loss ~ " ( w )  for those glass formers 
for which p peaks have actually been measured. But at least for the representative class 
of experiments, where &"(U) is caused by polar molecules solved in non-polar glass 
formers, one can understand qualitatively that E"(w) is given by the tagged particle 
density susceptibility ( U ) .  Therefore our formulae are of direct relevance for the 
experiment. In the specified case E"(W)O is given by the tagged particle transverse 
current relaxation spectrum for vanishing wavevector @)f" (w )  (Forster 1975 p 303). The 
simplest pair modes having an overlap with the relevant variables arejs(q)p( - q ) ,  where 
j ,  is the longitudinal tagged particle current and p(q) is the coherent density fluctuation. 
Hence the mode-coupling approximation yields W E " ( U )  = 2 , V ( q ) ~ ~ [ & ~ , ( t ) @ , ( t ) ] .  Here 
V(q)  is some vertex; as usual it weights most strongly the contribution from wavevectors 
q corresponding to short distances (Bengtzelius et a1 1984). The dominant dipole relax- 
ation is due to nearest-neighbour fluctuations. Within the /3 regime the leading con- 
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tribution to the specified mode-coupling integral is found by substituting @&t) - f;, 
(Oi( t )  - f 4 )  = h",'(t). As a result one indeed gets E"(w)  = ( Z , V ( q ) f ~ h , ) ~ ~ ( o ) ,  as 
anticipated above. 

The Cole-Cole law is related to an exact limit distribution in renewal theory (Feller 
1971). This observation as well as the connection of our general theory with path 
averagings in a potential landscape, discussed in § 2, allows us to give a probabilistic 
interpretation of our b relaxation result. Consider a tagged particle. Most of the time it 
will sit in a local potential minimum; it is trapped in some cage. Occasionally, spon- 
taneous fluctuations will yield a rearrangement of the particle surroundings and thereby 
induce a jump to a different cage. Let us denote the time the particle spendsin aparticular 
configuration, the waiting time, by T. This time can also be viewed as the lifetime of the 
considered metastable state. It is a random variable with a certain distribution function 
P ( x )  = Pr[T S x]. The number of jumps or renewals up to time t ,  N,, is also a random 
variable with the distribution function Pr[N, > r ]  = Pr[T, + . . . T, < t]  = P'*(t) ,  where 
Pr* denotes the convolution of P(t)  with itself r times. For large times P'*(t) will tend to 
a limit distribution, whose properties depend on P(x) .  Let us consider the case where 
P(x)  exhibits a power-law decrease for large x, specified by an exponent 0 < a < 1: 

1 - P(x)  - x - 0 .  

Then one gets (Feller 1971, p 373) 

Pr[N, > (2 - a)  (t/x)'/a] + F,(x). 

(5. loa) 

(5. 10b) 

Here F,(x) is a one-sided stable distribution, defined as the spectral density of a 
Kohlrausch decay process (Feller 1971, ch 13): 

exp( - t o )  = lom e-'"F;(x) dx. (5.10c) 

So from (5 .  10b) one finds for large times 

Pr[(a/(2 - a ) ) N ,  < x] =: G(t, x) = 1 - F,(tx-"'). 

Function G(t, x) is related to the Mittag-Leffler function (Feller 1971, p 453): 

(5 .  l l a )  

lox e-PX d,G(t, x) dx  = Ma(-p t " ) .  (5 .  l l b )  

So our result ( 5 . 9 ~ )  is given as average over the number of renewals up to time t ,  N,: 

(5.12) 

Here pa = faa/[AT(l - a)  (2 - a) ]  and E[. . ,] denotes an expectation value with respect 
to the distribution defined in equation (5.11~). Hence the result for the /3 relaxation 
peak is equivalent to a distribution of waiting times characterised by equation (5 .  10a). 
This distribution function has no finite moments. In particular the expectation of the 
waiting time itself diverges: E [  TI = m. The particle can be trappedfor an arbitrarily long 
time. The renewal periods make up a Cantor-like set Z,  with Hausdorff dimension a. 
Imagining the renewal periods to trigger a clock which runs on the set Z,, one can define 
a stochastic time O,(t) with the same distribution as N ,  (Karlin and Taylor 1981 ch 15, 
Sjogren 1989). So alternatively one can say that the @ peak reflects relaxation but with 
the stochastic time O,(t) replacing real time. 
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6. Conclusions 

The phase transitions obtained from the non-linear mode-coupling equation for the 
dynamics of strongly coupled particles can be related to certain singularities defined in 
parameter space (Gotze and Haussmann 1988). The simplest of those singularities, the 
Whitney folds, are studied in this paper. They lead to a picture where the dynamics is 
ruled by two power laws and by two corresponding frequency scales, given by two 
exponents a and b. We have introduced a system of natural coordinates. Two of them, 
the exponent parameter A and the separation parameter U, are the relevant ones for the 
discussion of the p relaxation dynamics. It is possible to define hyperplanes SA in 
parameter space where the exponents a ,  b are fixed. Owing to the variation of a physical 
control parameter like temperature T ,  the system will move on a path C in control 
parameter space, which intersects the transition hypersurface S, for T = T,. The path 
will in general not be located on SA and this implies that the exponent parameter will 
depend on temperature A = A(T),  and so will the exponents a = a ( T ) ,  b = b(T).  In 
practice this will introduce large corrections to the asymptotic scaling laws, which refer 
to A(TJ.  This was demonstrated in previous calculations (Gotze and Sjogren 1988). In 
a two-component system the p relaxation spectra for the charge, say, may be quite 
different from the ones for the density. It may exhibit a p peak above the a peak 
(Buchalla et aZl988, Bosse et a1 1988). In the limit of strong coupling between charge 
and mass fluctuations, we found that the p peak is exactly described by a Cole-Cole law. 
This result holds also when all wavevector dependences are taken into account. Since 
the Cole-Cole law results as a limit distribution in renewal theory, our result is consistent 
with a picture of particle motion in an energy landscape. The stochastic lifetimes of the 
metastable states, visited by the tagged particle, are found to have an algebraic long- 
time tail x?. Since a < $ the distribution of waiting times does not have finite moments 
and so there exist many low-lying almost degenerate metastable states. The renewal 
periods where the system jumps between different metastable states define a Cantor- 
like set on the time axis with fractal dimensionality a. In previous work the cx relaxation 
was also described by a Cole-Cole law but with the von Schweidler exponent b replacing 
a (Gotze and Sjogren 1987b). Thus there is a large time region covering the whole /3 
relaxation process and a major part of the arelaxation, which is described by the renewal 
processes. Since the a and p processes overlap in the von Schweidler region, the two 
renewal processes are closely related. The crossover of the spectral exponents from a to 
b implies a change of the fractal dimensionality for the renewal processes. 
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